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Abstract
The new pandemic produced by a beta-coronavirus, SARS-Cov-2 presents some differential facts with the previous pandemics 

also produced by beta-coronavirus (severe acute respiratory syndrome--SARS and Middle East respiratory syndrome--MERS). 
The respiratory support consists of conventional oxygen therapy, high-flow nasal oxygen therapy, non-invasive mechanical 
ventilation, CPAP (continuous positive airway pressure), and invasive mechanical ventilation. May be this type of treatment 
has saved more lives than other treatments used during the pandemic. Although some components of noninvasive support 
such as high-flow nasal oxygen therapy, noninvasive ventilation, and CPAP had uncertainties regarding their efficacy at the 
beginning of the pandemic, they have been used widely throughout the world. On the other hand, COVID-19 presents dis-
tinctive pathological findings that probably cause physiological changes different from the classical respiratory distress of the 
adult and consequently can lead to different scaling and adjustments of respiratory support. In these lines we will review the 
clinical evidence of the efficacy of non-invasive respiratory support in hypoxemic acute respiratory failure before the pandemic, 
the pathological, pathogenic and functional changes described in this pneumonia and how these can affect the application of 
respiratory support as well as the way in which today we must apply respiratory support.
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APOYO RESPIRATORIO NO INVASIVO EN NEUMONÍA CAUSADA POR COVID-19. DE LA PATOGENIA A LA 
PRÁCTICA CLÍNICA

Resumen
La nueva pandemia producida por un beta-coronavirus, SARS-CoV-2 presenta algunos hechos diferenciales con las pande-

mias anteriores también producidas por beta-coronavirus (síndrome respiratorio agudo severo - SARS y síndrome respiratorio 
de Oriente Medio - MERS). El soporte respiratorio consiste en oxigenoterapia convencional, oxigenoterapia nasal de alto flujo, 
ventilación mecánica no invasiva, CPAP (presión positiva continua en las vías respiratorias) y ventilación mecánica invasiva. 
Puede ser que este tipo de tratamiento haya salvado más vidas que otros tratamientos utilizados durante la pandemia. Aunque 
algunos componentes del apoyo no invasivo, como la oxigenoterapia nasal de alto flujo, la ventilación no invasiva y la CPAP, 
tenían dudas sobre su eficacia al comienzo de la pandemia, se han utilizado ampliamente en todo el mundo. Por otro lado, 
COVID-19 presenta hallazgos patológicos distintivos que probablemente causan cambios fisiológicos diferentes a la dificultad 
respiratoria clásica del adulto y, en consecuencia, pueden conducir a diferentes escalas y ajustes del soporte respiratorio. En 
estas líneas revisaremos la evidencia clínica de la eficacia del soporte respiratorio no invasivo en la insuficiencia respiratoria 
aguda hipoxémica antes de la pandemia, los cambios patológicos, patogénicos y funcionales descritos en esta neumonía y 
cómo estos pueden afectar también la aplicación del soporte respiratorio, como la forma en que hoy debemos aplicar el so-
porte respiratorio.

Palabras clave: Ventilación no invasiva; Soporte ventilación no invasiva; CPAP; Oxigenoterapia nasal de alto flujo.
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Introduction 

The so-called SARS-Cov-2 is the seventh beta-corona-
virus that affects humans and the third that causes severe 
pneumonia1. Although it is genetically similar to the other two 
previous coronaviruses that also caused severe pneumonia, 
this one maintains a difference of 21% with SARS-Cov-02, 
which is the most similar. As a consequence, it is very risky 
to extrapolate both its behavior (SARS-Cov-2 produces less 
severe pneumonia, but is much more contagious) and the 
treatments that were effective in the previous two. At present 
we have pharmacological treatments that have either been 
shown to be ineffective or of moderate benefit for some 
subpopulations of patients, although there is still much po-
tential treatment under investigation. Respiratory support 
has probably saved more lives than all the drugs we have 
used so far.

The NIRS groups the conventional therapy with oxygen 
delivered by nasal cannula, masks with Venturi effect to 
regulate the concentration of inspired oxygen and reservoir 
bag. These systems can enrich the inspired air from 21% of 
ambient air to approximately 60% or close to 100% using 
the reservoir bag, but the actual FiO2 that will reach the 
patient will depend on the peakflow of air (in this case ox-
ygen) needed the patient. The maximum flow of a typical 
flowmeter is 15 L/min and a critically ill patient may need 
higher flows (i.e., 30 L/min). In order to achieve this last 
flow, we need another type of support such as high flow nasal 
oxygen therapy (HFNOT) or non-invasive ventilation (NIV). 

Although NIRS may be provided using a flowmeter for 
oxygen flow, to achieve high FiO2 for patient (i.e. close to 
100%) we need high pressure valves (on the wall). In re-
spiratory intermediate care unit (RICU), two high pressure 
valves per bed for oxygen and also for air is recommended3. 

Noninvasive respiratory support in hypoxemic 
acute respiratory failure before the first wave 
of COVID-19

In June 2020, an important meta-analysis was published 
that summarizes and analyzes the publications made on 
non-invasive support from 1995 to 20194. This study con-
cludes that NIV, delivered by mask or Helmet interfaces, is 
superior to standard oxygen therapy in terms of avoiding 
intubation and survival. NIV by Helmet was superior to NIV 
by mask probably due to a its more continuous use5 and 
less air leaks6. The HFNOT was also superior to standard 
oxygen therapy in avoiding intubations, but not in survival, 
probably because the 5 studies included in this section of the 

meta-analysis enrolled seriously ill patients (mean PaO2/FiO2 
< 200)7-11 where perhaps both forms of supplying oxygen 
are not as effective as at a lower severity level.

Noninvasive respiratory support in acute 
hypoxemic respiratory failure during the 
COVID-19 era

First clinical practice guidelines
At the beginning of the pandemic, there was some uncer-

tainty about the efficacy of non-invasive support (HFNOT and 
NIV) in hypoxemic acute respiratory failure (ARF) because 
the aforementioned meta-analysis was not published and it 
was feared that while using non-invasive support, vital time 
was lost for the application of invasive mechanical ventilation 
with intubation. On the other hand, contagion was feared 
for professionals by generating aerosols. Therefore, the first 
guidelines carried out either did not recommend non-invasive 
support or only HFNOT and NIV to try to avoid intubation12-14. 
However, subsequent studies have not endorsed the impor-
tance of aerosolization in infections, especially if it is placed a 
surgical mask over the point of aerosolization (nasal cannula, 
orifice of venturi effect or exhalation valve for mask, orifice 
of intentional leak for mask or orifice of expiratory valve)15.

Noninvasive respiratory support use during the 
pandemic

HFNO had been widely used with apparent favorable 
results in observational studies16-19 and its use has been 
recommended by some guidelines during the pandemic13,14. 
Failure rate seem be lower in patients with PaO2/FiO2 > 200 
in comparison with those with PaO2/FiO2 ≤ 20020.

NIV by mask or “Helmet” has been widely utilized during 
the pandemic but also irregularly across centers probably 
depending on of the implantation of this therapy or the ex-
istence of RICU21-29.

Anatomopathological alterations and pathogenesis
The autopsies that were carried out in Italy yielded many 

surprising data. Pseudo-emphysematous changes were ob-
served, such as those that can be seen when there is in-
crease of alveolar dead space, but mainly thrombosis of the 
capillaries, arterioles and medium-sized arteries, as well as 
damage to the vascular endothelium with an inflammatory 
component30. In addition, surely favored by hypoxia, the 
pulmonary capillaries divide in two by a mechanism known 
as intussusceptive angiogenesis, forming a “tangle” of newly 
formed pulmonary capillaries31.

It is known that SARS-Cov-2 has a high affinity to bind to 
the angiotensin converting enzyme (ACE2) present in some 
cells such as type II alveolar pneumocytes. Once the virus 
enters the cell, a large inflammatory cascade is produced 
known as a “cytokine storm” that damages the capillary 
alveolus membrane, causing fluid exudation to the alve-
olus that leads to hyaline membrane syndrome or adult 
respiratory distress32. This also occurs in other viral lung 
infections. But in addition, the virus penetrates the cells of 

“Take home” message
COVID-19 presents distinctive pathological findings 

that probably cause physiological changes different from 
other similar diseases and consequently can lead to dif-
ferent scaling and adjustments of oxygen therapy and 
non-invasive mechanical ventilation.
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the vascular endothelium, rich in ACE2, and causes a new 
inflammatory cascade at that level that leads to throm-
bogenesis and a decrease in fibrinolysis, that is, vascular 
thrombosis. On the other hand, this injury affects vascular 
tone leading to vasoconstriction. Both thrombosis and va-
soconstriction result in pulmonary areas that are ventilated, 
but not perfused, which can be interpreted as increase in 
alveolar dead space32. The tangle of newly formed capillaries 
by intussusceptive angiogenesis prevents normal laminar 
blood flow, producing a turbulent flow that does not pro-
mote gas exchange and increases the lung areas that are 
ventilated and not perfused31.

Physiological consequences
The consequences of the vascular alterations described 

can be evidenced in CT angiography, observing “buds” in the 
small arteries that have been called “budding tree”. If we 
perform a dual perfusion CT scan, we can also observe the 
lung areas that are ventilated, but not perfused33.

Pulmonary compliance increases when the lung has ex-
cess air with respect to other components of the lung tissue 
(increase of alveolar dead space), as in emphysema, and 
is reduced when the lung replaces air with other material 
such as inflammation or edema, which is what happens in 
the adult respiratory distress. It has been shown that lung 
compliance in patients with classical adult respiratory distress 
is lower than in COVID-1934 distress and that this compliance 
is correlated with the degree of consolidation or pulmonary 
infiltrates seen radiologically33. The greater the lung consoli-
dation, the less compliance and vice versa. That is, taken as a 
whole, the lung of adult respiratory distress of COVID-19 has 
more air (more areas that are ventilated and not perfused, 
more alveolar dead space) than adult respiratory distress 
produced by other causes, which can be a consequence of 
the “amputation” of the vascular bed caused by thrombosis, 
vasoconstriction and intussusceptive angiogenesis.

Repercussions on the application of non-invasive 
respiratory support

Two phenotypes of pulmonary involvement have been 
identified in COVID-19. The “L-low elastance” and “H-high 
elastance” phenotypes. Elastance is an opposite or inverse 
measure to compliance and can be translated as resistance 
to compliance or “stiffness”, that is, the L phenotype would 
have easy compliance (it requires little inspiratory effort to 
introduce air into the lungs) and the H a reduced compliance 
(requires great inspiratory effort to introduce air into the 
lungs). The characteristics of the L phenotype are normal 
compliance, not very extensive or consolidated pulmonary 
infiltrates, and a predominance of vascular abnormalities 
(thrombosis, vasoconstriction, and intussusceptive angiogen-
esis). The H phenotype would have reduced compliance and 
extensive and consolidated pulmonary infiltrates13,30. The H 
phenotype is more like the classical adult respiratory distress.

It is also likely that there are intermediate phenotypes 
and even not really phenotypes but evolutionary patterns 
within the same process. Consequently, the strategy for ap-
plying respiratory support would be different35. The L phe-

notype or pattern may not require mechanical ventilation 
and it would be sufficient to achieve adequate oxygenation, 
sometimes with HFNOT, which in turn produces a slight PEEP. 
The H phenotype would require mechanical ventilation similar 
to that usually used in adult respiratory distress. Due to the 
fact that in these conditions the lung is not very compliant 
or rigid, we cannot apply high volumes of inspiratory air 
because they would produce high pressures with the risk 
of “breaking” the lung, causing a pneumothorax. However, 
a high PEEP that recruits alveoli that are collapsed is very 
desirable. In the intermediate phenotype or pattern, “L/H”, 
mechanical ventilation with higher inspiratory volumes than 
the H phenotype and intermediate PEEP would be necessary.

An important aspect is whether these evolutionary pat-
terns or phenotypes are unique to COVID-19 or already 
existed without our knowing in other similar pathologies 
that also cause respiratory distress in adults. A study has 
examined a registry of patients with adult respiratory dis-
tress of 1,117 cases, observing that 12% seems to have 
an “L” phenotype, presenting these patients with a better 
prognosis36. This suggests that this phenotype can actually 
occur in other causes of distress, but it seems much more 
frequent in COVID-19 probably due to vascular alterations.

In recent years, the deleterious role of respiratory effort 
as a generator of lung damage has been revealed37, which 
has become critical in the management of pneumonia caused 
by COVID-1913,30. As has been commented on the inflamma-
tion secondary to the storm of cytokines cause damage to the 
lung capillaries that exude fluid into the alveoli. This may be 
potentiated in COVID-19 with respect to other diseases due 
to damage to the vascular endothelium. These alterations 
inactivate the surfactant resulting in collapsed alveoli, which 
is also favored because healthy alveolar units compress ill 
and partially collapsed units38. The collapse and the alveolar 
fluid prevent the normal exchange of gases, leading to a 
serious depletion of oxygen in blood or hypoxemia. To try 
to counteract hypoxemia, the brain from its bulbar portion 
sends impulses to the respiratory muscles to produce more 
vigorous contractions that can increase lung volume. These 
contractions cause enormous negative pulmonary pressures 
that are greater the stiffer and less compliant the lung is. 
In a scenario of capillary damage, these negative pressures 
“suck” liquid into the alveolus, thus closing the vicious circle 
(Fig. 1).

Alveolar collapse is maximum at the end of expiration 
when lung volume is reduced to its maximum38. To distend 
these collapsed alveolar units at the end of expiration, enor-
mous pressures are required that also affect the surrounding 
alveolar units, favoring the exudation of fluid through these 
alveoli which can extend the inactivation of the surfactant 
and collapse as an “oil stain”. These pathophysiological al-
terations could be alleviated with mechanical ventilation by 
adding a high PEEP (i.e.,> 10 cmH2O) and increasing the 
respiratory rate to prevent expiration from being deep and 
lasting.

NIV reduces this negative transpulmonary pressure, and 
consequently the respiratory effort, by almost half39. As we 
have mentioned, this negative transpulmonary pressure 
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necessary to distend the lung with each breath can cause 
lung damage. This damage can increase markedly as the 
respiratory rate is higher. To understand the importance of 
respiratory rate in lung damage, we can imagine a patient 
breathing with a high transpulmonary pressure, for example, 
–50 cmH2O and at a respiratory rate of 30 times in one min-
ute. Over 24 hours, this patient would do 43,200 breaths and 
each one could favor the passage of fluid from the pulmonary 
capillaries to the alveoli. This possibly explains the dramatic 
worsening seen in some patients within 24 or 48 hours.

Algorithms for the application of respiratory support 
today

Although the treatment gap of each component of the 
NIRS has not well established, in overall standard oxygen 
therapy may be the first step of NIRS for patients with not 
very high FiO2 required (i.e. from 21% to 60%) to achieve 
the targets of adequate oxygenation and respiratory rate 
(RR) (SaO3 > 93%)13 and RR < 25) (Fig. 2). For higher FiO2 
patient requirement, HFNO or NIV/CPAP may be necessary. 
There is not a clear gap for using of these last components 
of the NIRS but probably, HFNO may be used when standard 
oxygen with high flow (i.e. FiO2 close to 60%) became un-
comfortable for patient or when the targets (SaO2 > 93% or 
RR < 25) are no achieved13,14,40. This may happen in patients 
with not profound radiologic consolidation (“L” phenotype)13,30 
were the hypoxemia caused by high ventilation/perfusion 
areas is an important pathophysiologic component and a high 
PEEP may be not necessary. In cases were HFNO failure to 
attain the targets or probably in patients with more profound 
radiologic consolidation (“H”)13,30 or “L/H” phenotypes35 (high 
shunt effect) were a PEEP can be important to recruit col-

lapsed alveoli, NIV or intermediate to high CPAP, with high 
FiO2, may be the alternatives. For “H” phenotype” a protec-
tive NIV may be required with low volume and plat pressure, 
high PEEP and high RR with high expiratory flow13,30. For 
“L/H” phenotype a more conventional NIV may be used with 
high volume, low RR and intermediate PEEP13,30. In both last 
phenotypes, intubation and invasive mechanical ventilation 
may be frequently necessary13,30. 

Conclusions

The NIRS plays an important role in hypoxemic acute 
respiratory failure and surely in that caused by COVID-19, 
although there is a lack of specific clinical trials to confirm 
this. Both HFNOT and NIV are superior to conventional ox-
ygen therapy, although NIV is more powerful. It is likely 
that NIRS in overall can increase contagiousness among 
healthcare workers, but the risk is also likely to be mini-
mized by wearing a surgical mask over the point of aerosol 
production. Given that many of the pathological changes of 
pneumonia caused by COVID-19 are distinctive, they surely 
produce specific physiological changes that in turn require 
modifying the way in which we apply the NIRS with respect 
to other similar diseases. The degree of oxygenation and 
the respiratory rate (as a surrogate respiratory effort) seem 
necessary markers to apply and scale the NIRS.
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Figure 1. Lung injury produces capillary damage with leak of fluid 
into alveoli leading to pulmonary edema those results in gas ex-
change impairment. Consequently, the respiratory drive is increased 
with the subsequent increase in transpulmonary pressure, high IE 
and Vt, resulting in PSILI thus closing the circle.
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IE = inspiratory effort; Vt = tidal volume; TP = transpulmonary 
pressure; PSLI = patient self-inflicted lung injury.
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